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Abstract—With the advent of Bluetooth low-energy (BLE)-
enabled smartphones, there has been considerable interest in
investigating BLE-based distancing/positioning methods (e.g., for
social distancing applications). In this article, we present a
novel hybrid learning method to support mobile ad-hoc distanc-
ing (MAD)/positioning (MAP) using BLE-enabled smartphones.
Compared to traditional BLE-based distancing/positioning meth-
ods, the hybrid learning method provides the following unique
features and contributions. First, it combines unsupervised learn-
ing, supervised learning, and genetic algorithms (GAs) for
enhancing distance estimation accuracy. Second, unsupervised
learning is employed to identify three pseudo channels/clusters
for enhanced RSSI data processing. Third, its underlying mecha-
nism is based on a new pattern-inspired approach to enhance the
machine learning process. Fourth, it provides a flagging mech-
anism to alert users if a predicted distance is accurate or not.
Fifth, it provides a model aggregation scheme with an innovative
2-D GA to aggregate the distance estimation results of different
machine learning models. As an application of hybrid learning
for distance estimation, we also present a new MAP scenario
with an iterative algorithm to estimate mobile positions in an
ad-hoc environment. Experimental results show the effectiveness
of the hybrid learning method. In particular, hybrid learning
without flagging and with flagging outperforms the baseline by
57% and 65%, respectively, in terms of mean absolute error.
By means of model aggregation, a further 4% improvement can
be realized. The hybrid learning approach can also be applied
to previous work to enhance distance estimation accuracy and
provide valuable insights for further research.

Index Terms—Bluetooth low energy (BLE), COVID-19,
machine learning, mobile ad-hoc distancing (MAD)/positioning
(MAP), social distancing.

I. INTRODUCTION

ACCORDING to the statistics in [1], there are more
than five billion smartphones worldwide with an annual

growth rate of approximately 10% in recent years. Most
of today’s smartphones are equipped with Bluetooth low
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Fig. 1. Three possible BLE-based positioning scenarios.

energy (BLE) [2]. Recently, due to COVID-19, there has
been considerable interest in investigating and developing
social distancing-related applications (e.g., to monitor distance
between people) [3], [4]. BLE-enabled smartphones are well
suited to support these applications, and BLE is the most pop-
ular technology of choice for contact tracing applications [5].
The aim of this article is to contribute to this important cur-
rent development with a new distancing/positioning paradigm
called mobile ad-hoc distancing (MAD)/mobile ad-hoc posi-
tioning (MAP) using machine learning.

Similar to WiFi, BLE also operates over the ISM (2.4 GHz)
band [6]. There are forty channels, and three of them (chan-
nels 37, 38, and 39) are advertisement channels [6]. There
are two types/modes of BLE devices: 1) broadcaster and
2) scanner. During the advertisement phase, a broadcaster
sends advertisement packets periodically over the three chan-
nels. A scanner can receive the packets and hence detect the
radio signal strength index (RSSI), which is one of the most
popular types of data for estimating the distance between two
BLE devices [7].

Fig. 1 shows the three possible BLE-based positioning sce-
narios. In the first case, the broadcasters are fixed and the
scanners are mobile. This is the common case in use. It is
also possible to have the broadcasters moving and the scanners
fixed (i.e., second case). For example, people can wear BLE
tags which are detected by scanners. In the third case, both
the broadcasters and scanners can be mobile (e.g., people with
BLE phones monitor the distances between each other). We
call this MAD/MAP scenario. Relatively less work has been
conducted for this new scenario, which is closely related to
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TABLE I
COMPARISON BETWEEN THE TRADITIONAL APPROACH AND NEW APPROACH

social distancing applications. In fact, there are new research
challenges and opportunities. For example, researchers have
been investigating the use of fingerprinting for BLE-based
positioning, e.g., [2]. However, this cannot be used for the
MAD/MAP scenario because of the ad-hoc nature (i.e., finger-
prints cannot be obtained when both broadcasters and scanners
are mobile in an ad-hoc environment). On the other hand, the
use of smartphones (i.e., for both broadcasters and scanners)
allows more complex methods to be employed and machine
learning-based methods should play an important role in the
MAD/MAP scenario. As shown in Fig. 1, the basic question
is based on the RSSIs, what are the distances and positions of
the mobile phones?

To support MAD/MAP, there are five important research
questions. First, what are the major RSSI-related issues that
hinder the distance estimation accuracy? In other words, the
core question is that based on available RSSI data, how can
we enhance the distance estimation accuracy? Second, is there
any new approach for supporting this new MAD/MAP sce-
nario? Third, how can we predict whether a distance estimate
is accurate or not? Fourth, how can we combine the results of
different machine learning models to enhance the distance esti-
mation accuracy? Fifth, how can we tackle the new positioning
problem in an ad-hoc environment (i.e., without infrastruc-
ture, such as the conventional trilateration problem with, for
example, three fixed beacons)? As shown in Table I, this arti-
cle aims to address these research questions using a novel
approach with the following new contributions.

1) We conduct an RSSI analysis. One major finding is that
RSSI varies over discrete levels. In nearly all previous
work, an aggregate channel is employed for training
purposes as channel-related information is usually not
available through the mobile phone application program-
ming interface (API) (i.e., it is assumed that RSSI varies
over one channel [8]). This is in fact one major cause of
inaccuracy. As will be explained later, to tackle this issue,
we employ an innovative unsupervised learning (cluster-
ing) method to cluster RSSI over three pseudo channels
so as to enhance the distance estimation accuracy.

2) We present a new hybrid learning method to support
MAD/MAP. Traditionally, supervised learning is used
for training RSSI-based data for distance/positioning
estimation purposes. In the new approach, we investi-
gate hybrid learning by combining unsupervised learning
(i.e., for clustering RSSI data), supervised learning, and
genetic algorithms (GAs) to enhance distance estimation
accuracy based on RSSI data. As shown by later exper-
imental results, the hybrid learning method can achieve
significant improvement over traditional methods.

3) In addition to using data analysis and statistical methods,
the hybrid learning approach also makes use of a pattern-
inspired mechanism (i.e., inspired by image recognition).
With traditional methods, it is not easy to determine
whether an estimated distance is good. By using the
pattern-inspired mechanism, the estimated distance can
be flagged more effectively (i.e., to predict whether a
prediction is good or bad). This allows further accuracy
improvements.

4) Unlike conventional methods in which a single machine
learning model is used, we propose a new model
aggregation mechanism based on an innovative 2-D
GA method so that prediction results from different
machine learning models can be combined to achieve
better accuracy.

5) We discuss the MAP scenario with a new iterative algo-
rithm to estimate the positions of mobile users in a
mobile ad-hoc environment. This is a new problem with
little prior study.

6) We present extensive experimental results to study the
proposed hybrid learning approach, as compared to tra-
ditional methods. Experimental results show that by
using hybrid learning, the mean absolute error (MAE)
can be reduced to 0.66 m. Compared to the base-
line method and basic machine learning method, the
improvement percentages are 57% and 25%, respec-
tively. With the flagging option for hybrid learning
and the model aggregation method, further improve-
ments can be achieved at the expense of excluding some
estimated distances.

To the best of our knowledge, the hybrid learning approach
with unsupervised learning, supervised learning, and GA for
supporting MAD/MAP has not been studied in the litera-
ture. This new approach can also be applied to previous work
to improve performance and provide new insights for future
research.

The remaining sections of this article are organized as fol-
lows. Section II presents related work. Section III presents
the RSSI analysis and the hybrid learning method to support
MAD/MAP. Section IV presents and discusses the experi-
mental results. Section V gives the conclusion and future
work.

II. RELATED WORK

A. BLE Positioning Methodologies

Most BLE positioning techniques rely on radio signal
strength indicator (RSSI) values, but RSSI is an unreliable
indicator of distance because it is sensitive to obstructions
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TABLE II
SUMMARY OF RELATED WORK

and is thus subject to noise [23]. This is referred to as the
multipath problem [24]. Estimating distances/positions based
on RSSI is challenging, and most BLE-positioning methods
seek to tackle this problem by different means.

As shown in Table II, there are three major BLE
positioning approaches, namely, proximity-based, signal
propagation-based with trilateration, and fingerprint-based.
They are primarily based on RSSI. The most basic approach
is proximity-based, which is designed to provide a proximity-
based service in particular. For example, Apple’s iBeacon
provides a proximity-based mechanism, indicating whether a
beacon is close to or far from a mobile terminal (e.g., based
on an RSSI threshold) [25]. To enhance the proximity-based
method, researchers have studied more advanced techniques.
For example, [9] studied a threshold optimization framework.
Three RSSI-related models have been studied: 1) offline linear
least-squares regression; 2) offline nonlinear Gaussian process
regression (GPR); and 3) online GPR. The optimal threshold is
determined utilizing an optimization problem. Zhao et al. [10]
investigated a positioning method by considering the prox-
imity reports sent by a mobile terminal over time and using
a motion model. Particle filtering and smoothing methods
are used for position determination. Ng et al. [11] inves-
tigated a proximity-based method for dense deployment of
beacons, as the conventional method may not work effectively

when a large number of beacons is close to one another.
It employs an adaptive scanning mechanism together with a
spontaneous differential evolution algorithm to provide high
detection accuracy [11].

Trilateration/multilateration is one of the simplest RSSI-
based positioning methods. RSSI values from multiple anchors
are collected, and the distance to each anchor is estimated
using the signal attenuation model [26]. These distance values
are then used to estimate the position of an object, typically
based on a least-squares approach. As the RSSI values are
often noisy with large variations, filtering methods can be
employed to address this issue. For example, [13] developed
a positioning system with a weighted sliding window and
Gaussian filtering to smoothen the RSSI curve. Furthermore,
they used a Taylor series expansion-based algorithm to further
enhance positioning accuracy.

Another popular BLE positioning method is RSSI finger-
printing. An RSSI fingerprint is a vector of RSSI values of
multiple BLE beacons collected at a single reference point.
To find the closest fingerprint in a database, the k-nearest
Neighbor (kNN) algorithm is commonly used. For exam-
ple, [2] used both kNN and weighted kNN. Another study used
kNN [27] for a smart domestic power management system,
where positioning was needed to calculate energy consump-
tion. To address the issue of high variance in raw RSSI values,

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 09,2023 at 01:35:58 UTC from IEEE Xplore.  Restrictions apply. 



12296 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

they filtered the stream of values first and then extracted
maximum and minimum values from each reference point.
Yadav et al. [28] extended kNN with Bayesian estimation into
a single algorithm called the trusted k-nearest Bayesian esti-
mation (TKBE). They coupled TKBE with dead reckoning to
reduce positioning errors, and incorporated Kalman filtering
based on fuzzy logic to further enhance performance. Apart
from kNN, there are other schemes for matching fingerprints in
a database. For example, [29] proposed a novel ranking-based
RSSI fingerprinting method with Kendall Tau correlation coef-
ficient (KTCC) for fingerprint matching. One of the main
disadvantages of fingerprint-based positioning is that an exten-
sive database of fingerprints must be compiled in advance
before real-time positioning can take place. Ho and Chan [30]
designed a decentralized indoor positioning protocol to build
an RSSI database on the fly by allowing broadcasters to
exchange signals with each other. This database can then be
used to estimate the distance from an object to anchors.

Some studies have been conducted to investigate the use
of the newly released Angle of Arrival (AoA) feature of
the Bluetooth 5.1 standard for indoor positioning [31] using
multiangulation and have demonstrated promising results. For
example, [32] experimented with using AoA alone and com-
bining multiangulation with multilateration, and found that
both methods performed slightly better than current methods.
Another interesting study [33] has been done on the use of the
AoA technology for 3-D positioning, where the authors used
the least-squares approach for position estimation.

According to [34], BLE-positioning methods can be
combined with other methods to enhance accuracy and
performance. Among these complementary methods are
1) sensor-based positioning using sensor data from gyroscopes,
magnetometers, and accelerometers, available in most smart-
phones; 2) magnetic field fingerprinting matching known mag-
netic field distributions with readings for unknown locations;
and 3) map-matching (an indoor map is taken into consid-
eration during positioning). For example, [35] combined dead
reckoning with trilateration and Kalman filtering, thus propos-
ing a hybrid positioning method with better performance.
Röbesaat et al. [18] used a similar approach, achieving promis-
ing performance. Another study in [36] developed different
signal attenuation models for three BLE advertising channels
instead of relying on a single channel for distance estimation.
Measurements from the three channels are then assembled to
calculate a more stable distance value. Ye et al. [37] designed a
positioning system to remove the need for multilateration and
multitriangulation as only one anchor is used for positioning.
Their system combines data from the anchor and a pedes-
trian dead reckoning (PDR) method, and further improves
positioning performance using Kalman filtering.

B. Indoor Positioning Using Machine Learning

As the trajectory of BLE signal propagation is difficult to
model, there has been growing interest in exploring machine
learning to support positioning. Li et al. [38] provided a sur-
vey of the use of machine learning for indoor positioning.
The study in [39] reiterated the advantages of using machine

learning in positioning methods. Bozkurt et al. [40] compared
multiple machine learning models for fingerprint-based BLE
indoor positioning and established that kNN outperformed
other models such as decision trees. They found that even
after using ensemble learning models, such as AdaBoost
and Bagging, decision trees still performed more poorly.
Prasad et al. [41] used GPR in their RSS fingerprint-based
positioning system. They used two types of GPR: 1) con-
ventional GPR (CGPR) and 2) numerical approximation GPR
(NaGPR). Their proof-of-concept solution involves training
a machine learning model in a noise-free indoor environ-
ment, to be deployed later in real-world conditions, and
their experimental analysis demonstrated that this approach
improved the root-mean-square error (RMSE) of NaGPR.
Homayounvala et al. [42] compared GPR to other ML meth-
ods like support vector machine (SVM) and kNN and found
that the former outperformed the latter in positioning accuracy.
Another common machine learning model used for real-time
indoor positioning is the extreme learning machine (ELM),
which features a single hidden layer. Lu et al. [43] compared
multiple types of ELMs in real-world and simulated conditions
and achieved promising results. Zhao and Wang [44] also used
SVM, but to mitigate the noise issue, they used kernel direct
discriminant analysis (KDDA) and relevance vector regres-
sion (RVR). Their proposed method outperformed existing
methods, such as weighted kNN. Tran and Ha [45] inves-
tigated a creative machine learning approach by using both
classification and regression models for a light-based position-
ing system. In essence, classification was used to divide the
indoor environment into two distinct areas, and then regres-
sion was used for position estimation. Last but not least, there
has been growing interest in studying deep learning in indoor
positioning research. For example, [46] built a fingerprint-
based positioning framework called DeepFi, where channel
state information (CSI) is used. In the offline phase, finger-
prints are fed into a deep learning net, which is then used in
the online phase for real-time positioning. Another study [21]
used an autoencoder net to capture high-level features and
solve the problem of high feature dimensionality. Their system
can use new data to learn on the fly, making it a flexible posi-
tioning solution. Zou et al. [47] also trained an online deep
learning network that continuously accepts new training data
at a rapid speed. They built a sequential feedforward net with
one hidden layer and used WiFi RSS fingerprints for the input
layer. BelMannoubi and Touati [48] also utilized autoencoders,
aiming to address the multipath problem. Their experimental
results showed their model performed better than kNN and
SVM. Long short-term memory (LSTM) nets have also found
a use in indoor positioning [49], with one study employing
a hybrid network with LSTM elements [39]. While convolu-
tional neural networks (CNNs) are commonly used for image
processing, there were also attempts to use them for indoor
positioning [50].

III. HYBRID LEARNING METHOD

In this section, we first present an analysis of RSSI, and then
the hybrid learning method. In particular, the hybrid learning
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Fig. 2. RSSI analysis. (a) Phone 1: blue: 5 m, yellow: 3 m, green: 1 m. (b) Phone 2: gray: 5 m, orange: 3 m, blue: 1 m.

method is designed based on findings from the RSSI analy-
sis. Finally, we discuss the MAP scenario with an iterative
algorithm for estimating mobile user positions in an ad-hoc
environment.

A. RSSI Analysis

To develop the hybrid learning method, we have conducted
many RSSI-related experiments intending to identify the key
issues affecting distance estimation accuracy. Fig. 2 shows the
RSSIs when two different mobile phones receive BLE broad-
cast packets (i.e., during the broadcast phase) at 1, 3, and
5 m from the same broadcaster (i.e., a sending mobile phone),
respectively. It can be seen that the RSSIs are highly varied
over time. Although the two mobile phones receive the same
BLE packets or signals (i.e., from the same sender with the
same transmission power), the measured RSSIs can be quite
different. The figure shows that the patterns have both sim-
ilarities and differences. Even with the same mobile phone,
there can be a large RSSI variation for the same distance. For
example, as shown in Fig. 2(a), the RSSI for 1 m can vary
between −60 and close to −80. Note that the unit of RSSI is
in dBm. For the other mobile phone, the RSSI for 1 m can
sometimes drop to nearly −90, even lower than the RSSI for
3 and 5 m. The two figures also show three discrete levels
of RSSI with distinctive RSSI variations. One possible reason
is that the BLE packets are sent over three separate channels.
However, on most mobile phones, channel-related information
is currently not available (e.g., through the APIs of the phone’s
operating system). Hence, in most previous work, the RSSIs
are considered over one aggregate channel, although the RSSIs
can vary within each individual channel. We believe that this
may lead to inaccurate distance estimation. Possibly within the
same channel, the RSSIs for the same distance can occasion-
ally remain relatively constant [see both Fig. 2(a) and (b)]. On
the other hand, the RSSIs for 1, 3, and 5 m can sometimes
have the same values. Note that for example, the RSSIs for
the worst channel for 1 m may be similar to those for the best
channel for 3 or 5 m. In some cases, there may even be con-
fusing RSSIs. For example, as shown in Fig. 2(b), the RSSIs
for 3 m may even be much lower than those for 5 m. Fig. 2
also shows there are clear high RSSIs for 1 m. In other words,
these RSSIs cannot be reached at 3 or 5 m, irrespective of the
channels. That means, if these RSSIs are detected, the dis-
tance range can be more certain. Fig. 2(a) shows some clear

low RSSIs as well. However, Fig. 2(b) does not show similar
patterns for the other mobile phone. For low RSSIs, it can be
a result of other factors.

B. Hybrid Learning—Training Phase

Based on the aforementioned RSSI analysis, the proposed
hybrid learning method seeks to enhance RSSI-based dis-
tance estimation with the following unique features. First,
unlike previous work in which an aggregate channel is consid-
ered [51], unsupervised learning is employed to identify three
pseudo channels (i.e., clusters) for enhanced RSSI processing.
Second, as there are confusing or mixing RSSIs, a flagging
method is proposed to alert users as to whether an estimated
distance is predicted to be accurate or not (e.g., so that it can
be excluded or remeasured). Third, apart from using data ana-
lytics, a pattern-inspired mechanism is employed to enhance
the machine learning process. Fourth, instead of using one
machine learning model, a new model aggregation method
(with further flagging) is proposed to further enhance distance
estimation accuracy. As shown by the experimental results in
the next section, the hybrid learning method with the afore-
mentioned features can provide a significant improvement over
conventional methods. Fig. 3 shows the flow diagram of the
hybrid learning method. In the training phase, there are six
main steps: 1) RSSI data collection; 2) clustering of RSSI data;
3) range determination; 4) RSSI cluster assignment; 5) dis-
tance estimation training; and 6) elimination model training.
These steps are explained as follows.

1) RSSI Data Collection: In order to build a distance esti-
mation model for a pair of mobile phones (i.e., one as a
broadcaster and the other one as a scanner) for different dis-
tances, RSSI data are collected at various sampling distances,
such as 1 m, 2 m, . . . , 6 m. Note that although the sample
distance is discrete, regression models are used for machine
learning. As an example, 5 min of RSSI data are collected at
each sample distance. With a common broadcasting interval
setting at 100 ms, there are approximately 2000–3000 RSSI
measurements for every sample distance. Twenty data samples
or RSSI records are grouped into one data set, called RSSI
record group for further processing. In other words, one RSSI
record group (i.e., the fundamental unit for hybrid learning)
associated with a distance comprises r = 20 RSSI records.

2) Clustering of RSSI Data: As mentioned, during the BLE
advertising phase, BLE packets are sent over three advertising
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Fig. 3. Flow diagram of the hybrid learning method.

Fig. 4. Example of cluster assignment for one RSSI record group.

channels (i.e., RSSI varies over three channels, possibly with
different characteristics). However, as channel information is
usually not available through the mobile phone’s API, only one
aggregate channel is considered in conventional approaches
(i.e., considering that RSSI varies over one rather than three
separate channels). Here, we use unsupervised learning (i.e.,
clustering) to cluster RSSI data for each distance into three
groups or pseudo channels by means of k-means clustering.
Suppose there are nd sample distances, there will be 3nd clus-
ters. For example, if there are six sample distances, there will
be 18 clusters. Within each channel, it should be reasonable to
assume that RSSI should vary more consistently. The use of
clustering seeks to identify the separate channels with the aim
of enhancing the later machine learning process. Note that the
clusters can be viewed as pseudo channels.

3) RSSI Range Determination: After generating the clus-
ters or pseudo channels, the RSSI range (minimum and max-
imum) of each cluster is determined. The range information
is to facilitate the cluster assignment in the next step. Fig. 4
shows a cluster rule example as determined by k-means clus-
tering. For distance x, Cxy denotes cluster y of distance x.

For each distance, there are three clusters or pseudo channels.
Note that like frequency channels, clusters for different dis-
tances may overlap with one another, but clusters for the same
distance are distinctive. For example, as shown in Fig. 4, C12
(cluster 2 at distance 1) is overlapped with both C21 (cluster 1
of distance 2) and C22 (cluster 2 of distance 2).

4) RSSI Cluster Assignment and Processing: In an RSSI
record group, each RSSI record is assigned to the clusters
based on the aforementioned rule or RSSI ranges. For exam-
ple, an RSSI record of −65 should belong to cluster 2 of 1 m
(C12) and cluster 2 of 2 m (C22). Note that an RSSI record
may be assigned to multiple clusters. The cluster assignment
example can be found in Fig. 4. As an analogy, the RSSI
records look like “pixels” in an image (i.e., they can be viewed
as an image-inspired innovative approach).

After the assignment, the count of each cluster is deter-
mined (see an example in Table III). The cluster counts are
then normalized as shown in Table IV. This normalization pro-
cess seeks to establish the distribution or pattern to facilitate
the data training. As an analogy, the normalized cluster count
gives the “image intensity.”
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TABLE III
CLUSTER COUNT EXAMPLE

TABLE IV
NORMALIZED CLUSTER COUNT EXAMPLE

5) Distance Estimation Model Training: The normalized
cluster information (Table IV) is used as the features (input)
of the machine learning model for distance estimation training
purposes (i.e., with the actual distance as the label). Compared
to other RSSI-based training models (e.g., regression) which
normally use RSSI as the input, our proposed method uses the
normalized count of the 18 clusters as the estimation model
input. In the example, there are 18 features corresponding to
the normalized count of the 18 clusters. In essence, they pro-
vide the distribution/pattern for the corresponding distance.
Four machine learning regression models are used for the
training/prediction, namely, random forest (RF), kNN, SVM,
and neural network (NN). They will also be used for the model
aggregation to be explained later. For the training, the cross-
validation method is used to build the model. The model is
then saved for the testing/estimation phase.

6) Flagging Model Training: Flagging is an optional fea-
ture that seeks to identify uncertain distance estimation with
the aim of further enhancing distance estimation accuracy.
Basically, after building the distance estimation training model,
the distance of each RSSI record group is predicted based on
the model using the corresponding cluster pattern. The pre-
dicted distance is then compared to the corresponding actual
distance. If the absolute error is greater than a certain compar-
ison threshold, the RSSI record group is flagged. That means,
the corresponding cluster pattern may lead to a poor or uncer-
tain prediction/estimation. Unless otherwise specified, we shall
use 1 m as the comparison threshold as an example. A flagging
model training is then conducted using all RSSI record groups
with the label “flag” or “not flag”. The trained model is used
to predict whether or not the input cluster pattern is flagged
(i.e., for the testing data). If an RSSI record group is flagged,
the predicted result may be disregarded because the estimated
distance may not be accurate (e.g., due to confusing RSSI).
In this case, additional measurement(s) can be taken until a
better prediction is obtained. Of course, there is a tradeoff. If
the threshold is too small, many remeasurements are required.
The investigation of this tradeoff will be presented in the next
section.

C. Hybrid Learning—Testing/Prediction Phase

As shown in Fig. 3, most steps for the testing/prediction
stage follow that of the training stage. Similarly, to estimate
the distance from another phone, 20 RSSI records are col-
lected (i.e., forming one RSSI record group for processing).
The RSSI records are assigned to each cluster based on

Fig. 5. Model aggregation using GA.

the predetermined clustering rule. The cluster counts and
normalized cluster counts are determined similarly to the
above. Based on the normalized cluster counts and the
trained machine learning model (i.e., the distance estimation
training model in Section III-B5), the estimated distance is
predicted. Furthermore, based on the flagging model (i.e.,
Section III-B6), the estimated distance may be flagged (i.e.,
good or bad prediction) based on the training cluster patterns.
If it is flagged (i.e., potentially inaccurate distance estimation),
the user can retake the measurement until it is not flagged.
Optionally, model aggregation can be used to further enhance
accuracy, which is explained in the next section.

D. Model Aggregation

To further enhance the hybrid learning method, we present
a novel GA-based model aggregation scheme. In essence,
the aim is to aggregate the models (i.e., to determine the
best weighting for the machine learning models, such as RF,
SVM, kNN, and NN such that the overall MAE can be min-
imized). The best weighting is found by a GA. As shown
in Fig. 5, a chromosome has ten genes, each represented by
one of the models. Each gene contributes to 10% (or 0.1)
of the overall weighting. Hence, in the example, as there
are four genes for model 1, model 1 should have a weight-
ing of 0.4. Chromosomes can be mixed through a crossover
process (e.g., chromosomes 1 and 2 are mixed to produce
chromosomes 3 and 4 by exchanging some genes). The new
chromosomes are evaluated based on the MAE (i.e., fitness
function). Sometimes, they may be better than their parents
in terms of the fitness function. Occasionally (i.e., with a cer-
tain probability), a chromosome can be changed through a
mutation process to introduce abrupt change. This seeks to
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Algorithm 1 Model Aggregation—GA
Input: Estimated distances by the machine learning models: RF,

kNN, SVM, NN
Output: Best weighting w for each model

1: C = Randomly initialize a two-dimensional chromosome pool
2: while iteration times do
3: P = Randomly assign the chromosomes into pairs
4: for (ci, cj) in P do
5: cn, cm = Crossover(ci, cj) // for all six sub-chromosomes

(e.g., cross-over of ci1 with cj1)
6: Mutation(cn, cm) with a probability of 0.1
7: Put (cn, cm) into C
8: end for
9: C = Best 100 two-dimensional chromosomes based on the

MAE (fitness function) as computed by the actual distances,
estimated distances, and model weightings

10: end while
11: return Best weighting w based on C

facilitate the search for a global minimum rather than a local
minimum for MAE. In our case, with a certain small proba-
bility (e.g., 0.1%), some genes/models are randomly changed
to another gene/model. For example, chromosome 3 and chro-
mosome 4 are changed to chromosome 5 and chromosome 6,
respectively, through a mutation process as shown by the red
genes. Starting from a random population of chromosomes and
after a certain number of generations of crossover and muta-
tion, the best chromosome(s) and hence the best weighting for
the models can then be determined.

To further enhance the scheme, we propose an innovative
2-D GA scheme (Algorithm 1). Basically, each chromosome
can now be 2-D instead of 1-D. By default, a general chro-
mosome can also be defined. If certain conditions are met, the
corresponding chromosomes will then be used. For example,
as shown in Fig. 5, if the estimated distances found by model 1
and model 2 are the closest (e.g., as represented by the bit
vector), the chromosome 1.1 should be used for the weight-
ing. Similarly, if the estimated distances found by model 1
and model 3 are the closest, chromosome 1.2 should be used.
The aforementioned crossover and mutation process can be
extended to the 2-D chromosomes (e.g., chromosome 1.1 and
chromosome 2.1 can be mixed to produce chromosome 3.1 and
so forth). The rationale of the aforementioned scheme is that if
two independent models find similar estimated distances (i.e.,
a particular condition), the two models may receive a higher
weighting. Note that other conditions can also be defined for
the 2-D GA scheme, making it a general scheme. Similar to
the 1-D GA process, the best weightings can be found by the
2-D GA process.

Last but not least, we also propose a flagging mecha-
nism/scheme. If the estimated distances of the models highly
deviate (i.e., as reflected by the variance of the distances esti-
mated by the models), it indicates that the estimated distance
(i.e., by the aggregated models) may not be reliable (e.g., due
to the data quality or noise). In this case, it is better not to
accept the result or to alert the user of its possible inaccuracy
(e.g., flag the result or alert the user to take another measure-
ment). In the later experiments, we shall evaluate this flagging
mechanism as well.

Fig. 6. Hybrid learning model.

In summary, Fig. 6 shows the hybrid learning model.
Unsupervised learning is used to discover pseudochannels for
enhanced RSSI data processing. Note that this is unlike con-
ventional RSSI-based machine learning methods (i.e., this is
a new approach). The result of the unsupervised learning, i.e.,
the clustering information, is used as the input for the super-
vised learning model. More specifically, normalized cluster
counts as discussed above are used as the training features.
If there are s sampling distances, there will be 3s features
for the training process due to the three pseudo channels
associated with the three clusters. That means, the number
of features depends on the required sampling distances. Note
that the features seek to capture the channel or cluster pattern.
Supervised learning is employed for distance estimation based
on the cluster pattern. Flagging is used to exclude uncertain
estimated distances (i.e., if an estimated distance is less certain,
it can be excluded). Model aggregation with further flagging is
employed to combine the results of different machine learning
models with a 2-D GA scheme. This seeks to further enhance
the hybrid learning method by integrating various machine
learning models. Table V shows an example of the prediction
records with the distance estimation, error, and flagging result.

E. Mobile Ad-Hoc Positioning

In this section, we discuss the MAP scenario. The basic
question is that after estimating the distances between the
phone pairs using hybrid learning, how can the phone positions
be estimated? Note that this is a new interesting positioning
problem that has seldom been studied in literature, as the
conventional trilateration method (e.g., by means of three bea-
cons) cannot be used due to its ad-hoc nature. Suppose there
are n users/phones in the MAD/MAP system with an area
of w1 × w2 (all units in m) and they can share the estimated
distances between one another through the ad-hoc network.
The coordinate of the phone i is (xi, yi). The actual distance
between phones i and j is dij. Based on the hybrid learning
method, the measured distance of phone j from phone i is esti-
mated to be mij. Note that mij and mji may not be the same
due to different algorithm estimations, but the difference in
general should be small.

The objective of MAP is to estimate the coordinate of each
phone, i.e., the estimated coordinate of phone i: ai and bi.
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TABLE V
FLAGGING EXAMPLE

Algorithm 2 MAP Iterative Algorithm
Input: Number of phones N, Array of pair-distance of each phone

pair A, Width of the area: w1, Length of the area w2
Output: Array of estimated positions

1: initialize estimated positions P
2: P[0...n − 1] = (w1/2, w2/2)
3: i = 0
4: while i < 10000 do
5: for all pair-distance d in A do
6: dmax = Max(A)
7: B = GetPhoneFromLargestPairedDistance(dmax)
8: if B[0] is AnchorPhone then
9: PhoneToUpdate = B[1]

10: else
11: PhoneToUpdate = B[0]
12: end if
13: UpdatePosition(PhoneToUpdate)
14: Costi = Cost(P)
15: if Costi < Costi−1 then
16: Update position in P
17: else
18: Ignore position
19: end if
20: end for
21: i + +
22: end while

For coordinate set up, we assume that there are three anchor
points. To facilitate the discussion, they can be represented as
three fixed phones (i.e., anchor points/phones).

Initially all users/phones are assumed to be in the middle of
the area, i.e., ai = w1/2 and bi = w2/2 for all values of i. Based
on the current estimated coordinates, the estimated distance lij
can be computed. The difference of the estimated distance
with the measured distance can then be determined, i.e., lij −
mij. The objective is to minimize the cost, i.e., the sum of the
squared differences, as shown in

Cost = 1

c

c∑

k=1

(lk − mk)
2 (1)

where c is the number of combinations of paired distances
between two phones (i.e., c = NC2 where N is the number
of users), lk is the estimated distance of the paired distance
of two phones i and j (i.e., li,j) and mk is the corresponding
measured distance.

An iterative algorithm (see Algorithm 2), inspired by
the gradient descent algorithm, is used to determine the
coordinates. In each iteration, the largest value of (lij − mij)

2

is found in order to minimize the objective function (e.g.,
suppose that phones i and j are found). At first, the initial
step size and direction are decided, such as −0.1w or 0.1w.
After moving one of the phones, the cost is calculated. If the

Fig. 7. Experimental setup.

new cost is larger than the previous cost, the step is discarded
and in the next iteration, a new step and direction are tried.
If the cost is lower, the change is adopted. The coordinates
and distances for the whole system are then updated accord-
ingly. Upon updating, the iteration will then repeat for the
next largest (lij −mij)

2. The iterations will stop when a certain
number of iterations is reached or the target sum of the square
differences is fulfilled.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setting

To evaluate the proposed hybrid learning method, we have
conducted extensive experiments in an indoor environment
(i.e., a room). The experimental setting for the base experi-
ments is outlined in Fig. 7. The room is a computer laboratory
about 7 × 12 m2 in size, with computers placed at the edge of
the room, and chairs and desks placed around the room. The
experiments were carried out using a variety of mobile phones,
as shown in Fig. 7. These four types of Android mobile phones
(A, B, C, and D) cover different hardware configurations. Each
mobile phone can be a broadcaster and a scanner, so there
are 12 combinations (i.e., phone pairs). To advertise and scan
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Fig. 8. MAE for different phone pairs for the daily experiments (Four result groups: day 1, day 2, day 3, and day 4).

Bluetooth signals, we used the Android built-in BLE library
(namely, BluetoothLeScanner).

We have run the same experiment for four days (e.g., to
check for data consistency) and have computed the overall
average results. The objective of the experiments is to evalu-
ate the different methods under the same conditions. On each
day, RSSI data for each phone pair were collected at sam-
pling distances of 1, 2, 3, 4, 5, and 6 m with two tripods (see
Fig. 7). At each sample distance and for each phone pair com-
bination, about 5 min of RSSI data/records were collected.
Twenty RSSI records were grouped into one RSSI record
group. With experiments taking place over four days, with
12 phone pair combinations and six sampling distances, more
than 200 000 RSSI records were processed. The collected data
were processed based on the hybrid learning method, basic
learning method (i.e., conventional machine learning based on
mean RSSI), and baseline method. Orange machine learning
tool [52] and programs written in Python were used for data
processing and machine learning purposes. Unless otherwise
specified, 70% and 30% of the RSSI data (i.e., per phone pair)
were used for training and testing, respectively. The machine
learning baselines (i.e., basic machine learning methods) are
based on the commonly used machine learning algorithms (i.e.,
similar to the related papers). The baseline method is based on
the Android Beacon Model (also known as AltBeacon) [53]
commonly used by the industry for distance estimation. The
model uses the following formula to convert RSSI to distance:

d = A
( r

t

)B + C (2)

where d is estimated distance, r is the measured RSSI, t is
the reference RSSI measured at 1 m, and A, B, and C are
constants. The default constant values provided by the model
were used. The aim of the following experiments is to evaluate
the performance of hybrid learning with these baselines.

B. Distance Estimation

Fig. 8 shows the MAE for the hybrid learning method using
various machine learning models (RF, kNN, SVM, and NN)
for the 12 phone pair combinations for the four-day exper-
iments (i.e., four result sets from day 1, day 2, day 3, and
day 4). It can be seen that while the trend in general is similar,
the results depend on the phone pairs (i.e., the configurations

Fig. 9. Measurements from a broadcaster at the same distance by two
different mobile phones.

of both the transmitting and receiving phones). Note that even
for the same transmitting phone, the RSSIs measured by the
receiving phones can be different. For example, Fig. 9 shows
the distribution of measurements from a broadcaster taken by
two different devices at the same distance. We can see that
the measurements can vary, which is also explained in our
previous findings [30], due to the difference in the hardware
(e.g., Bluetooth chip, antenna, etc.). That means, device het-
erogeneity is a key issue. To take the important issue of device
heterogeneity into consideration, data training should be con-
ducted on a phone pair basis in practice. In fact, we used this
training approach in our experiments. To cope with the vast
number of phone models, a crowd-sourcing approach can be
used in practice. For example, there can be a cloud database
that stores the training data of different pairs of transmitting
and receiving mobile phones (i.e., for different types of mobile
phones, taking into account device heterogeneity). The data
can be contributed through crowd sourcing and other suitable
means.

Fig. 10 shows the overall average results for the experi-
ments. The baseline method achieves an MAE of 1.53 m.
Using basic machine learning (i.e., BL), the MAE can be
enhanced to around 1 m. For example, with basic machine
learning using RF (i.e., BL-RF), the MAE is about 1.07 m.
With the hybrid learning method (i.e., HL in the figure), the
MAE can be further enhanced to around 0.6–0.7 m. RF (i.e.,
HL-RF) provides better performance in general. By means of
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Fig. 10. Average MAE for different methods.

Fig. 11. Cumulative distribution function of absolute error distance.

flagging (i.e., with F in the figure), the MAE can be slightly
further enhanced, to around 0.5–0.6 m with hybrid learning
using RF (i.e., HL-RF F), providing the best performance.
Note that in the case of flagging, flagged results are not
included in the calculation because the estimated distance may
be uncertain.

To further evaluate the distance estimation results, Fig. 11
shows the cumulative distribution function of the absolute
error. For the hybrid learning method, RF (i.e., the best one) is
used (i.e., HL-RF). The graph shows that HL-RF outperforms
the other two methods. Around 20% of the estimations have
zero errors, and 80% of the estimated distances have an error
within 1 m (i.e., without flagging).

Fig. 12 shows the average results of the four machine learn-
ing models (RF, SVM, kNN, and NN) as well as the model
aggregation results (i.e., by means of 2-D GA). For the model
aggregation, the first and last two days of distance estimation
results are used for training and testing, respectively. With

Fig. 12. MAE and improvement of various methods.

Fig. 13. Tradeoff of flagging.

basic machine learning (i.e., BL in the figure), the average
MAE is 1.04 m, representing a 32% improvement over the
baseline method. Using hybrid learning, the average MAE is
0.66 m, representing a 57% improvement over the baseline
method or a further 25% improvement over the basic machine
learning method. If flagging is used for hybrid learning, the
average MAE can be further improved to 0.54 m or a 65%
improvement over the baseline method. In other words, there
can be a further 8% improvement compared to the nonflagging
case. With flagging (i.e., using a comparison threshold of 1 m),
22% of the estimated distances are flagged or excluded. By
means of model aggregation, a further 4% improvement can
be realized. Finally, if further flagging is used by the model
aggregation, the average MAE can be enhanced to 0.43 m,
representing a 72% improvement over the baseline method.
This is achieved at the expense of excluding an additional
11% of estimated distances. It is assumed that the excluded
measurements can be retaken later.

Fig. 13 studies the tradeoff between flagging and MAE
based on the average results of the four machine learning mod-
els. For example, by using a comparison threshold of 1 m, the
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Fig. 14. Tradeoff of flagging for model aggregation/GA.

flagging percentage is about 22% (i.e., about 22% of the RSSI
records are excluded) and an MAE of 0.54 m can be achieved.
If the comparison threshold is lowered to 0.75 m, the flagging
percentage becomes about 30%. In this case, the MAE can be
further enhanced to 0.51 m. A reasonable flagging percentage
should be acceptable. Note that for each flagged estimated dis-
tance, the measurement may need to be retaken. Furthermore,
when an estimated distance is flagged, the estimation is likely
to be inaccurate, although it may also occasionally be accurate.
If the flagging percentage is too high, many measurements may
become invalid. On the other hand, as discussed earlier, there
may occasionally be confusing RSSIs. In these cases, it would
be better to notify users that the measurements may not be
accurate (e.g., due to uncertainty in the RSSI measurements)
so they can be retaken later, rather than providing a poten-
tially inaccurate estimated distance. Fig. 14 shows the tradeoff
between flagging and MAE for the model aggregation scheme.
In this case, when the variance of the estimated distance among
the four models is greater than a certain threshold, the corre-
sponding estimated distance is flagged and excluded from the
calculation of the MAE. For example, if the variance is set to
0.35, the flagging percentage is about 11% and the achievable
MAE is 0.43 m. While it is possible to achieve a lower MAE
by setting a lower variance, the flagging percentage will rise
(i.e., many estimated distances become invalid), which may
not be acceptable.

Fig. 15 shows the sample cluster patterns (i.e., heatmap)
for 1 m (first row), 3 m (second row), and 5 m (third row).
The color intensity of each cluster is based on the normalized
cluster count. The cluster patterns (i.e., based on the normal-
ized cluster counts) provide the underlying mechanism for
the machine learning process. It is expected that the cluster
patterns for the same distance should be similar, thus facil-
itating the distance estimation. Note that for each sample
distance, there may be multiple similar patterns and the ones
in Fig. 15 are just examples. In general, this pattern-inspired
approach complements the traditional approach. In the exam-
ples, it can be seen that the cluster patterns for the first and
second columns look similar. However, the cluster patterns for

Fig. 15. Cluster patterns.

Fig. 16. Distance estimation accuracy—improvement percentage over
baseline.

the third column look different from the other two. Thus, the
cluster patterns of the last column are flagged. To the best
of our knowledge, this pattern-inspired approach for distance
estimation is new and has not been studied in the literature. It
has the potential to open a new area of research.

In general, it is well known that obstacles and environmental
conditions can affect distance estimation accuracy of RSSI-
based positioning methods. In other words, this is a common
problem. In the base experiments, we assume that there was
a clear environment with a reasonable line of sight so that the
MAE of different methods can be compared under the same
general experimental conditions. To investigate the basic effect
of obstacles, we have also repeated an additional set of exper-
iments on another day. In this case, two chairs, as obstacles,
were put between a pair of phones. As discussed above, in
terms of MAE, the basic learning method and hybrid learn-
ing method can achieve an improvement percentage of about
32% and 57%, respectively, over the baseline method in the
base experiments. The objective of the additional experiments
is to evaluate how the improvement percentage changes in
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Fig. 17. Experimental setups for mobile ad-hoc positioning. (a) No obstacles.
(b) Four chairs. (c) Six chairs. (d) Six chairs and two monitors.

the presence of obstacles. Fig. 16 shows that as expected, the
improvement percentage drops with the presence of obstacles.
For basic learning, hybrid learning, and hybrid learning with
flagging, the improvement percentages become 19%, 34%, and
35%, respectively, with chair obstacles. That means, hybrid
learning can still significantly outperform basic learning in the
presence of obstacles. Note that this is an illustrative experi-
ment to investigate the basic effect of obstacles. More studies
can be conducted in future work.

C. Mobile Ad-Hoc Positioning

We have also conducted experiments to verify the feasibility
of using MAD to support MAP based on the iterative algo-
rithm (i.e., Algorithm 2) and to study the effect of obstacles.
As mentioned above, this is not a conventional positioning
problem because of the mobile ad-hoc nature. Our work should
provide insights for future work in this relatively new area.
Four sets of experiments were conducted, as shown in Fig. 17:
one set without obstacles, one set with four chairs as obsta-
cles, one set with six chairs as obstacles, and one set with
six chairs and two monitors as obstacles. In each experiment,
four mobile phones (A, B, C, and D) were placed evenly in
the experimental area. For comparison purposes, the phones
were placed at the same coordinates in all the experiments.
For setting up the coordinates accordingly, three anchor points
were used. The aforementioned hybrid learning method was
used for distance estimation and the MAP algorithm (i.e.,
Algorithm 2) was employed for position estimation (i.e., to
determine the estimated coordinates). As an example, hybrid
learning RF (HF-RF) was used as the machine learning model.
For the evaluation, RMSE between the actual coordinate and
estimated coordinate was computed.

Fig. 18 shows the mean RMSE of four phones against the
number of iterations. It can be seen that for both cases (i.e.,
without and with obstacles) the RMSEs converge to a steady
state value after a certain number of iterations. This verifies

Fig. 18. Positioning error (in meter) of the MAP experiment over different
iterations. (a) No obstacles. (b) Four chairs. (c) Six chairs. (d) Six chairs and
two monitors.

TABLE VI
POSITIONING ERROR (IN METERS) FOR DIFFERENT

ITERATIONS—WITHOUT OBSTACLES

TABLE VII
POSITIONING ERROR (IN METERS) FOR DIFFERENT ITERATIONS—WITH

FOUR CHAIRS AS OBSTACLES

TABLE VIII
POSITIONING ERROR (IN METERS) FOR DIFFERENT ITERATIONS—WITH

SIX CHAIRS AS OBSTACLES

the feasibility of using the MAP algorithm for positioning
estimation. Tables VI–IX show the RMSE of four phones as
well as the overall RMSE. In the case of no obstacles, the
overall RMSEs are about 0.73 m. In the case of four chairs,
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TABLE IX
POSITIONING ERROR (IN METERS) FOR DIFFERENT ITERATIONS—WITH

SIX CHAIRS AND TWO MONITORS AS OBSTACLES

six chairs, and six chairs and two monitors, the RMSEs are
about 1.01, 1.20, and 1.41 m, respectively. It means that the
MAP algorithm can still operate in an environment with obsta-
cles although the positioning accuracy is worse. In general, the
effect of obstacles is a complex issue and further investigation
can be carried out in future work.

V. CONCLUSION AND FUTURE WORK

In conclusion, we have presented a novel hybrid learning
method for BLE-based distancing/positioning. As an innova-
tive approach, it combines unsupervised learning, supervised
learning, and GAs to enhance distance estimation accuracy. In
addition to using data analytics, the underlying mechanism is
based on a pattern-inspired approach to enhance the machine
learning process. A flagging mechanism and a model aggrega-
tion scheme are also presented to achieve further enhancement.
We have also presented a new MAP scenario with an iterative
algorithm to estimate mobile user positions in an ad-hoc envi-
ronment. Experimental results (based on the processing of
more than 200 000 RSSI records for 12 phone pair combina-
tions) show the hybrid learning method can achieve significant
improvements over conventional methods. It is expected that
the hybrid learning approach can also be applied to previous
work for improving performance and provide new insights
for further research. Future research work includes a further
study on the pattern-inspired approach (e.g., exploring image
recognition techniques), the MAP algorithm (e.g., developing
advanced algorithms) and further investigation on the effect of
obstacles.
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